
Page | 1

Honours Project Report

Using texture synthesis to generate bark
textures with variation

By Ryan Mazzolini

Supervised by Associate Professor James Gain

Mark breakdown

 Category Min Max Chosen

1 Requirement Analysis and Design 0 20 0

2 Theoretical Analysis 0 25 0

3 Experiment Design and Execution 0 20 10

4 System Development and Implementation 0 15 15

5 Results, Findings and Conclusion 10 20 20

6 Aim Formulation and Background Work 10 15 15

7 Quality of Report Writing and Presentation 10 10 10

8 Adherence to Project Proposal and Quality of Deliverables 10 10 10

9 Overall General Project Evaluation 0 10 0

 Total marks 80

Department of Computer Science
University of Cape Town

2012

Page | 2

Abstract
The demand for 3D assets has grown considerably due to the availability and popularity of 3D

applications and productions. Low resolution assets are needed for real-time rendering applications,

such as computer games, while simulations and animated films require models at a higher resolution.

This has led to a desire for procedural generation techniques that can quickly and inexpensively create

3D content. In particular, there has been a growth in the demand for procedural tree generation

techniques, due to the many rendered environments that require model of trees. In a previous project,

a system was developed that generates 3D models of trees from skeletons drawn by users in a sketch

interface. The project presented in this report builds on that system by adding three features: surface

subdivision, procedural leaf generation and bark texture synthesis. The focus of this report is the use of

texture synthesis to generate seamless bark textures, exhibiting variation, from a sample image. This is

achieved through the implementation of an example-based synthesis technique, commonly known as

the discreet solver. The quality of the textures produced by this system were scrutinized in an

experimental study. The results of this study indicate that the discreet solver has potential to fill all of

the requirements, however future work is needed.

Acknowledgements
We would like to thank Triggerfish animation studios for their support and for hosting us during our

internship with them. During our time with Triggerfish we gained invaluable insight and experience into

the field of 3D animation and computer graphics. We are grateful for the time and patience provided by

all the staff during our short stay with them.

Secondly we would like to thank our supervisor Associate Professor James Gain. Prof Gain was

instrumental in organising and overseeing the project through the planning and development. This also

included the organisation of the internships with Triggerfish.

lastly we would like to thank all of the staff and students who have given up their time to participate in

the evaluation of our research.

Page | 3

Table of Contents
Abstract ... 2

Acknowledgements ... 2

Table of Contents .. 3

1. Introduction .. 5

1.1. Acknowledgements: Triggerfish... Error! Bookmark not defined.

1.2. Thesis Outline ... Error! Bookmark not defined.

2. Background Chapter ... 7

2.1. Abstract .. Error! Bookmark not defined.

2.2. Introduction .. 8

2.2.1. Defining texture synthesis .. 8

2.2.1.1. Textures... 8

2.2.1.2. Texture synthesis .. 9

2.2.2. The uses of texture synthesis .. 9

2.3. Techniques in texture synthesis .. 10

2.3.1. Procedural Texture Synthesis ... 10

2.3.2. Texture Synthesis from Samples ... 10

2.3.2.1. Pixel-based methods ... 10

2.3.2.2. Patch-based methods ... 12

2.3.2.3. Tiling-based methods .. 13

2.4. Tabulated Comparison of texture synthesis methods .. 14

3. Requirements .. 15

3.1. Accuracy .. 15

3.1.1. Variation .. 15

3.1.1.1. Different Tree Species ... 15

3.1.1.2. The same tree species ... 16

3.1.2. Seamlessness .. 18

3.2. Performance ... 19

4. Foundations .. 19

4.1. Texture synthesis .. 20

4.1.1. Texture Optimization .. 21

4.1.2. The Discreet Solver ... 23

Page | 4

4.1.2.1. K-coherence Analysis Phase .. 23

4.1.2.2. K-coherence Synthesis Phase .. 24

4.2. Surface Texture Synthesis ... 25

4.2.1. The Discreet Solver ... 25

5. Implementation .. 26

5.1. System Overview... 26

5.1.1. Integration into the existing GUI... 27

5.1.2. Workflow for the texture synthesis .. 27

5.2. Texture synthesis implementation ... 28

5.2.1. Textures... 29

5.2.1.1. Coherence textures ... 29

5.2.1.2. The Indexed textures .. 31

5.2.2. The synthesis method ... 32

5.2.3. The discreet solver .. 32

6. Evaluation ... 33

6.1. Expert User Testing ... 34

6.1.1. Design .. 34

6.1.2. Procedure .. 34

6.1.3. Results ... 34

6.2. Final User Testing .. 35

6.2.1. Design .. 35

6.2.2. Procedure .. 38

6.2.3. Results ... 39

6.3. Performance Testing ... 40

6.3.1. Design .. 40

6.3.2. Procedure .. 40

6.3.3. Results ... 41

7. Conclusion ... 43

8. References .. 45

Appendix A .. 48

Appendix B .. 49

Page | 5

Chapter 1. Introduction
The advances in technology, specifically in information technology, have changed the way people

interact with each other and the world around them. This is clearly evident in the creation and

distribution of multi-media. Multi-media, such as video and computer games, have become ubiquitous

and interactive through the aid of computer graphics. The rapid development and changes within the

field of three-dimensional (3D) computer graphics and animation have created an expectation for highly

realistic 3D models and environments. Creating these detailed and accurate 3D assets manually,

however, is expensive and laborious. Models of trees are particularly expensive to create due to the

quantity and variation of trees needed in environments (e.g., a forest of trees). This is has led to the

development of techniques to generate tree models procedurally.

Recently programs have been developed with the intention of procedural tree generation. Two

examples are the commercial product SpeedTree [1] and the open-source project TreeDraw [2]. A

procedurally created asset is defined as an asset which is created through a process of steps. The asset is

created once all of the steps have been completed. The aim of this project, otherwise known as

Yggdrasil, is to enhance the procedurally generated trees developed through TreeDraw.

1.1. Research question
Research questions have been created to measure the success of project Yggdrasil. The success for each

hypothesis is determined through performance and user testing. For the entire project to be successful

each of these research areas need to solve their specific requirements. The requirements for each

section are stated for each research question and are discussed further in the Yggdrasil overview in

Section 1.3.

1.1.1. Can texture synthesis add variation to generated bark textures in

procedural generated tree models?
A technique for synthesising bark textures needs to be found that can generated bark textures for

each model produced. These textures need to be tillable without noticeable seams. The bark texture

synthesised should also resemble a sample image or structure, while still being unique.

Development for the synthesis method should be iterative to allow regular testing.

1.1.2. Can multiple realistic leaf textures be generated from a sketch-based

interface?
A main requirement for the new system is to be able to create tree models with the inclusion of

leaves. The leaves produced should be recognisably similar to a user generated sketch of a leaf

outline.

1.1.3. Can the branching structure be more realistically modelled by

subdivision surfaces?
The branching structure of a tree model should be smooth and not contain any unrealistic features.

This is most noticeably seen where the branches diverge, specifically at the joins between branches.

Page | 6

1.2. Project TreeDraw
Project TreeDraw provides a method of producing procedurally generated trees with variation. A sketch

interface is used to capture the structure of a tree through user generated sketches. An L-System is then

created from this sketch to generate 2D trees with a similar structure to the sketch. This L-system is then

interpreted and converted from a 2D structure of a tree into a 3D tree model.

1.2.1. Sketch Interface

The sketch interface for TreeDraw acts as the front end of the system and the graphical user

interface(GUI). The sketch interface interprets a series of mouse movements and converts them into

information pertaining to a 2D model of a tree structure. From the tree structure obtained, trees

with a similar structure can be created. The sketch interface is specifically designed to be simple and

easy to use, this aids the speed using the program and creating tree models.

1.2.2. L-Systems

TreeDraw uses L-systems to take the sketch made, using the sketch interface, to develop similar 2D

tree models. Lindenmayer systems or L-systems are similar to formal grammars, consisting of an

initial object and a set of productions [3]. In a formal grammar parts of the initial object are changed

recursively by the productions. L-systems differ to formal grammars by applying productions in

parallel and simultaneously changing the whole initial object. This difference has made L-systems

predominantly used for modelling cell divisions in molecular organisms, where many divisions may

occur at the same time. L-systems are therefore, naturally suited for the procedural generation of

plant and tree models.

1.2.3. 2D-3D model converter

The model converter is designed to derive a 3D model from the L-system in a realistic time (roughly

faster than thirty seconds). This is achieved by directly transforming the 2D sketch into three-

dimensions. The branches are then rotated uniformly around the main trunk, attempting to

maximise the distance between each branch. This portrays realistic branching behaviour, as trees

naturally space their branches out in order to capture the maximum amount of sunlight. The

resulting model is then rendered and displayed to the user for analysis.

1.3. Yggdrasil Overview
Project Yggdrasil aims to provide enhancements to TreeDraw in order to increase the realism of

generated trees. This includes the introduction of new generation features, more variation and the

removal of visual artefacts. The three main areas of development include: the branching structure, bark

textures and the addition of leaves.

1.3.1. Branches

The existing system generates the 3D tree model with the use of cylinders. Generalised cylinders are

placed together, intersecting at joins of branches. This can be extended by creating a single mesh

from all of the individual cylinders and smoothing the join areas between branches. Both of these

can be solved through the use of subdivision surfaces.

Page | 7

1.3.2. Leaves

TreeDraw did not have any mechanism to create leaves for the generated trees, so adding leaves is

an obvious area to improve the system. The new process for creating leaves resembles the

generation of trees models, by allowing the user to sketch the shape of a leaf to be created. The leaf

is then created through the process of venation [4]. Nodes are placed within the outline of leaf

shape, close to the stem, and veins are grow toward them. Once veins have been connected to

these nodes, more veins are grown toward nodes that are placed further away from the stem. This

process continues until the vein system has been created over the entire surface of the leaf. Finally

the leaf is coloured according to the vein system and placed on the tips of the branches.

1.3.3. Bark Textures

The current system uses a single tillable texture for each tree model generated. These textures have
to be seamless and manually added for each tree being generated. This often requires textures to be
sourced from image libraries, which have images that are already made to be tillable and seamless.
Another option is to use an external program to make a image seamless, which can often introduce
unwanted or unnatural results depending on the type program and image used. Environments
requiring many different trees of the same species can also add further complications.
This requires textures that are similar in structure, while not being exactly the same. For example
noticeable repeating patterns can be found easily in a forest of trees, each using the same bark
texture.

For these reasons a feature for creating bark is added to the system. This feature uses an example-
based texture synthesis technique to generate seamless textures similar to a sample image. This
technique, commonly known as the discreet solver, fulfills all of the criteria for generating bark
textures (as discussed in chapter 3). It is capable of developing multiple

1.4. Thesis Outline
The structure for the remainder of this thesis is as follows:

 Chapter 2 provides background information on texture synthesis, reviewing different

techniques.

 Chapter 3 motivates the set of requirements for the texture synthesis of bark.

 Chapter 4 investigates the chosen synthesis technique including the history of its

development.

 Chapter 5 explores the specifics of the implementation for selected technique.

 Chapter 6 provides the design, procedure and results for the various rounds of user testing

run over the lifespan of the project.

 Finally chapter 7 provides a conclusion and future work for the thesis.

Chapter 2. Background Chapter
Texture synthesis is a method of computationally creating synthetic textures. It is important for

applications in computer graphics, computer vision and image processing. It is a large field containing a

variety of solutions and techniques. This makes finding a synthesis technique to fit a desired application

Page | 8

a daunting task. This chapter aims to explore existing techniques for texture synthesis and its

applications, highlighting strengths and weaknesses.

2.1. Introduction
Texture synthesis is a large field with many competing techniques and a variety of applications. This

makes it an important and active field of study. In this chapter we define what texture synthesis is,

investigate the applications of texture synthesis and explore existing techniques [5]. Texture synthesis is

used in many different areas and for different applications. It is predominantly important in computer

science applications like computer graphics, computer vision and image processing. The uses, however,

include many applications outside of computer science.

2.1.1. Defining texture synthesis

Textures

A texture in computer graphics is an image that is wrapped around a three dimensional model

through texture mapping thereby providing surface properties for the model. Texture mapping

is a technique that provides a way of representing surface details without modifying a models

geometry or material properties. The mapped images can describe many details, including

colour, reflection, transparency and displacements [5]. However, in practice a texture is most

often restricted to a colour image with repeating structure such as fabric, as illustrated in Figure

1. In this thesis we will focus on this narrower definition of a texture.

Textures can be created manually by texture artists. However, this is labour intensive, taking

long periods of time. The larger the texture is the more time it takes to make a realistic and

consistent looking texture. Some types of textures such as photo-realistic textures are simply

too complicated to create by hand. This is why the field of automated texture generation has

been investigated so thoroughly.

Page | 9

Figure 1. How textures differ from images (adapted from Wei and Levoy [6]). (a) is a general image while (b) is a
texture. A movable window with two different positions is drawn as black squares in (a) and (b), with the

corresponding contents shown below. Different regions of a texture are always perceived to be similar (b1,b2),
which is not the case for a general image (a1,a2). In addition, each pixel in (b) is only related to a small set of

neighboring pixels. These two characteristics are called stationarity and locality, respectively.

Texture synthesis

Texture synthesis is the creation and placement of textures through computation and

procedural generation. Creating textures that are perceived by humans as realistic is a very hard

problem to solve. Textures need to be consistent, for example by not containing visual artefacts

such as straight lines that are skewed. Textures also need to be perceived as naturally random

and not just as reoccurring sections. While synthesising realistic looking textures might be

possible, having them synthesised in a feasible time period is also essential. Users do not want

to have to wait for textures to be synthesised for an impractical amount of time. Some

applications even require textures to be synthesised in real-time, which puts significant

constraints on the complexity of the process.

2.1.2. The uses of texture synthesis

Texture synthesis is important for many applications that are reliant on computer-generated

environments. These include animated films, games and the construction or designing of

environments. The environments often need objects that are wrapped in seamless textures which

appear realistic. How realistic these textures are is often reliant upon how randomised the texture

looks and if there are obvious visual artefacts or patterns. However, this does vary by texture type as

some need to be more randomised (e.g., natural looking textures like bark) and some need to be

more regular (e.g., material textures like cotton). Texture synthesis is also important for areas

outside of computer-generated environments, such as, in medicine and other scientific fields that

apply computer graphics, computer vision and image processing.

Page | 10

2.2. Techniques in texture synthesis
In the area of texture synthesis various techniques exist for the creation and placement of textures.

These include texture placement, procedurally-generated textures and example-based texture

synthesis.

2.2.1. Procedural Texture Synthesis

A procedurally-generated texture is a texture generated using an algorithm. Similarly procedural

texture synthesis is a method of creating synthesised textures via computation and procedural

means. The algorithms used in the creation of procedural textures are usually based on fractal noise

or turbulence functions. Examples of these techniques are the Perlin [7] and Worley [8] three-

dimensional noise techniques which generate random colours. These are particularly useful in

modelling natural "randomness" such as for waves or marble. Procedural texture synthesis is limited

by its reliance on the programmer. Each texture requires a programmer to write and test the

procedural code until the resulting texture looks correct [9]. For these reasons this report will not

focus on procedural texture synthesis, but rather on texture synthesis from samples.

2.2.2. Texture Synthesis from Samples

As we have seen from section 2.2.1 procedural texture synthesis techniques have a strong reliance

on the programmer creating code for each class of desired texture. This is where example-based

texture synthesis comes into its own. Instead of procedurally generating a texture, a small sample

image is used to synthesize larger texture areas in the same style. Texture synthesis using example-

based methods is divided into three categories; Pixel-based methods, Patch-based methods and

Tile-based methods [10].

Pixel-based methods

Pixel-based methods of texture synthesis create the synthesized image pixel by pixel. Each

generated pixel is based on its neighbourhood of surrounding pixels. The example image is

searched to find the closest match to the neighbourhood of a particular pixel. The resulting area

is then used to formulate the pixel. The search will then continue for the next pixel. To make the

synthetic image original, the methods will often be based on a noise image in the synthesis

process. The main advantage of pixel-based methods is the ability to control textures at the

pixel level. These methods are, however, very sensitive to the size of the window in producing

adequate results and also do not cope well with strong features (eg., cracks). [10]

Page | 11

Figure 2. The algorithm by Wei and Levoy [6].(a) is the input texture and (b)-(e) show different synthesis stages of
the output image. Pixels in the output image are assigned in a raster scan order. The value of each output pixel p is
determined by comparing its spatial neighborhood N(p) with all neighborhoods in the input texture. The input pixel

with the most similar neighborhood will be assigned to the corresponding output pixel. Neighborhoods crossing
the output image boundaries (shown in (b), (c) and (e)) are handled toroidally. Although the output image starts as

a random noise, only the last few rows and columns of the noise are actually used. For clarity, we present the
unused noise pixels as black. (b) synthesizing the first pixel, (c) synthesizing the first pixel of the second row, (d)

synthesizing the middle pixel, (e) synthesizing the last pixel.

Efros and Leung [11] develop a system that uses non-parametric sampling to grow a texture out

from a centre pixel in an image. Neighbourhoods of similar pixels are found that match the

square window of pixels already grown around the pixel being analyzed. These neighbourhoods

are found to be similar using a Markov Random Field (MRF) model that measures the probability

brightness values of a pixel given the brightness values of its neighbourhood. Similar

neighbourhoods are chosen at random and are used to create each new pixel. The technique

employed by Efros and Leung is a general approach, but is computationally expensive and often

grows portions of the texture that do not reflect the structure of the sample image. Other

neighbourhood variations are used in methods such as the proposed solution by Wei and Levoy

[6] and Turk [9]. Wei and Levoy used a raster scan line method and a smaller neighbourhood of

recently generated pixels, this is shown in Figure 2. They also speed up Efros and Leung's

method by using tree-structured vector quantization. This creates a binary-tree-structured

codebook which can be used for nearest-point queries. Turk's method synthesises directly onto

a model by sweeping over a generated vector field that is used for indexing instead of the two

dimensional indexing usually used. This is illustrated in Figure 3. By directly synthesizing on a

model, boundary seams and artefacts created from wrapping an image around the model are

reduced. Turk used both the square neighbourhoods used by Efros and Leung, and a half square

neighbourhood. These neighbourhoods are used because multiple sweeps at different

resolutions over the model are need for best results.

Page | 12

Figure 3. The vector field algorithm by Turk [9]. User’s orientation input (left), the interpolated orientation field
(middle), and the sweep values shown using colour cycling (right).

For increased quality Wei and Levoy's as well as Turk's methods use a multi-resolution

technique. This technique is a multi-resolution pyramid based on a hierarchically statistical

method. Another method introduced by Ashikhmin [6] uses only the pixels around the targeted

pixel for its neighbourhood to reduce the blur effect found in Wei and Levoy's method. This

technique was also much faster than Wei and Levoy's even without the tree-structured vector

quantization. Ashikhmin's method produces good results for natural samples but can also

contain obvious artefacts from some samples.

Patch-based methods

With patch-based algorithms a texture is generated patch by patch. These patches are chosen

through the use of cutting paths. These cutting paths are created in the attempt to minimise

errors due to overlapping[10]. A method used by Efros and Freeman quilts together random

overlapping blocks according to a minimum cost path across the overlapped area. This obtains

good results at low computational cost. Another method by Liang et al. [12] uses patches

sampled according to a Markov Random Field density function. This is fast and real time,

however, errors and artefacts are created regularly.

Page | 13

Figure 4. This figure illustrates the graph-cuts approach by Kwatra et al.[13] showing the process of synthesizing a
larger texture from an example input texture. Once the texture is initialized, new patch locations are found

iteratively to refine the texture. Note the irregular patches and seams.

Kwatra et al.[13] introduced a graph-cut approach that computes seams of patches as shown in

Figure 4. This technique is useful for partially structured textures and can create good quality

images from by the patches. A problem with the above patch-based technique is that the

resulting textures are all regular. Liu, Lin and Hays [14] put forward their deformation field

solution where they view near-regular textures as statistical departures from a regular texture

along different dimensions. While this is a novel approach their method can only create near-

regular textures. A Directional Empirical Mode Decomposition-based texture synthesis algorithm

has been proposed by Y. Zhang et al. [15], which decomposes the sample texture into a series of

IntrinsicMode Functions (IMF) images in the inherent direction of the texture image. This

technique manages to maintain the features of the sample image while synthesizing at a high

level.

Patch-based methods often manage to preserve the global structure of the sample texture

much better than pixel-based techniques. However, they sometimes produce local artifacts on

the overlapping regions and do not keep the local consistency as well as pixel-based methods.

The search for good patches and cutting paths is not trivial and will often require iterative

improvement [10].

Tiling-based methods

In tiling-based methods tiles are pre-computed and placed seamlessly together to create a

texture. This makes synthesizing a large texture very fast[10]. However tile based methods often

fall victim to similar artefacts as patch-based methods.

Page | 14

The first of these techniques is the Wang Tiles method [16], which uses a set of tiles to

synthesize on the fly. This was proven to be highly efficient for real-time applications with

memory constraints. This technique, however, suffers from artefacts created from the corner,

joint and sampling problems. Recently, ω-tiles having been introduced by Ng et al. [17] with a

higher quality of pre-computed tiles and smaller tile sets than Wang tiles. This has been shown

to produce tiles of reasonable quality while only using 16 tiles as opposed to 64 tiles generated

for Wang Tiles. This means that it is even more efficient than Wang tiles with respect to

computation and memory. A method introduced by Zhang and Kim [10] aims at reducing the

artefacts produced by Wang Tiles. They remove the key artefacts using graph cut and sampling

techniques. The tile set is reduced from that of Wang Tiles, however, the method requires

greater pre-computation in developing the tiles.

2.3. Tabulated Comparison of texture synthesis methods
Table 1 is a tabulated comparison of different texture synthesis techniques for comparison. This is

extended from Y. Zhang et al. [15] to include Tile-based techniques. Each technique is compared

indicating the type of technique it is, if it is a multi-resolution technique, what the quality of the output

image is like as well as the speed of the technique. The synthesis quality column compares the quality of

the synthesised image from the best results "High" to results containing noticeable artefacts " Good " or

large noticeable artefacts " Medium ". The speed of synthesis is quantified into three categories,

"Medium" which runs in a few seconds, "Fast" running much faster than "Medium" but is not fast

enough to be useably interactive and "Real-time" which runs fast enough for interactive synthesis.

Method Synthesis

method
Multi-scale
synthesis

Synthesis
quality

Synthesis
speed

Synthesis type

Wei and Levoy [6]

Pixel-based

Yes

Good Medium

General textures

Ashikhmin M[18] Pixel-based No Good Fast

A wide variety of
textures

Liang L, Liu C, Xu Y, et
al. [12]

Patch-based No Medium

Real-time Natural textures

Efors AA, Freeman
WT [19]

Patch-based No Good Medium General textures

Kwatra V, Schödl A,
Essa I, et al.[13]

Patch-based No High Fast Partial structural
textures

Liu YX, Lin WC, Hays
J.[14]

Patch-based No Medium Fast A wide variety of
textures

Lefebvre S, Hoppe H.
[20]

Pixel-based Yes

High Real-time Near-regular textures

Kwatra V, Essa I,
Bobick A, et al. [21]

Pixel- and
patch-based

Yes

High Fast A wide variety of
textures

Zhang Y et al.[15] Patch-based Yes

High Fast A wide variety of
textures

Cohen et al. [16] Tile-based No Medium Real-time A wide variety of
textures

Ng et al. [17] Tile-based No Medium Real-time A wide variety of

Page | 15

textures

Zhang and Kim [10] Tile-based No Good Real-time A wide variety of
textures

Table 1. Method comparison for texture synthesis techniques as adapted from Y. Zhang et al. [15]. The synthesis quality

column compares the quality of the synthesised image from the best techniques. The speed of synthesis is quantified into
three categories, "Medium", "Fast" and "Real-time".

The most highly regarded synthesis techniques for quality of synthesis are the two competing methods

by Kwatra V, Essa I, Bobick A, et al. [21] Kwatra V, Schödl A, Essa I, et al.[13]. These methods are the

texture optimization and graph-cuts algorithms. The fastest algorithm, which also produces high quality

results is the parallel technique by Lefebvre S, Hoppe H. [20].

Chapter 3. Requirements

This chapter explores the features required to enhance textures in the existing system. The current

structure uses a single, predefined texture which is tiled across the surface of the tree model. The use of

a single tiled texture introduces seam inaccuracies which can be improved through the use of texture

synthesis methods (as reviewed in the background chapter). The new texture synthesis method should:

 Improve the accuracy of the of the texture covering the surface. This can be done by removing

seams over the surface and providing variation between trees and over the surface.

 Provide the synthesised texture within an appropriate time so as to integrate smoothly into the

existing system.

3.1. Accuracy
Precision is very important in the computer graphics industry in order to improve the realism of

generated models. Models in 3D applications undergo considerable scrutiny from users viewing and

interacting with the application. This can range from watching an animated film to engaging with a 3D

environment in computer simulations and games. It can also vary between pre-rendered images to real-

time rendering that requires up to 60 frames per second. Rendering is the process of capturing and

representing environmental information from a specific point of view in a modelled environment. The

information captured is used in the creation of frames or images.

 Improving the accuracy in the generation of bark textures can be divided into two main sections:

variation and seams. .

3.1.1. Variation

In the pursuit of improving tree bark variation, there are two focus areas: differentiation in the types

of tree species through texture variation and the improvement of bark diversity across single tree

models.

3.1.2. Different Tree Species

 When simulating a natural 3D environment, the inclusion of a range of tree species can be integral

in manufacturing authenticity for the viewer. Each type of tree demonstrates unique characteristics

Page | 16

in branch and bark structure, which when emulated, perpetuates the perception of reality. The

types of bark can vary from the thin papery scales of the Silver Birch, to the thick ridges of the Oak

tree, to the thin plates of the London Plane (as seen in Figure 1). This diversity in the bark provides a

challenge when trying to replicate each type accurately. By modelling each bark type individually,

highly accurate copies of the original bark structure can be created. As discussed in the previous

chapter, this is most commonly achieved through procedural generation as well as very specific

example-based texture synthesis methods. However, due to the vast quantity of tree and bark

species, a procedurally generated system is unfeasible. This is because creating a robust system for

every species is an almost impossible task. Each bark structure provides unique challenges that

require specific attention to be modelled correctly. This could be addressed by a system with many

different parameters, however, parameters are often slow to use, overwhelming to new users and

difficult to manage.

Figure 5. This image shows examples of bark from three different tree species; Silver Birch bark (Left)[22], Oak bark
(Middle)[23] and London Plane bark (Right)[24].

The new system should ideally be able to model a wide range of bark. To accomplish this a general

synthesis technique is required. The technique should not need to be manually modified for each

bark type. Typically, the synthesis techniques that are the most general are example-based texture

synthesis techniques. By providing a sample of the bark structure to be replicated, the example-

based synthesis techniques can automatically analyse the sample for synthesis. This removes the

need to manually modify the technique for each bark type.

3.1.3. The same tree species

When observing nature it is apparent that each tree, even in a forestfilled with the same tree type,

is unique. It is easily noticeable that the branching configuration is different from tree to tree ,

where the structure includes the number, shape and angle of each of the branches. Similarly the

bark on the surface of each tree is unique. Each tree's bark develops uniquely according its growth

and environment.

As a tree grows the formation of its bark is affected by many variables, both internal and external

[25]. The internal variables include: the age and season of the trees growth, natural mutations and

the tree's genetics. External variables include; the type and quantity of minerals and nutrients

Page | 17

available to the tree, damage caused by weathering, availability of sunlight, interaction with insects

and animals as well as the interference of other plant life.

These factors not only make the bark of each tree in a species unique but also make areas on the

same tree different. As a tree grows the old layers of bark die and are pushed outward from the

centre of the branch or trunk by new layers of bark [25]. The older dead bark dries out and fractures

or peels, creating the familiar patterns on the surface of trees. Each area on the tree is unique for

these reasons, as each area is constructed and fractures differently. However, at a quick glance

different areas on a tree can look very similar or even identical. This is because the global structure,

colour and texture are the same, while the local features are different. In Figure 2, two sections of a

Sycamore tree are highlighted to show the differences between them. It is noticeable that the

colour and texture of the bark is almost identical. The overall direction of the striations are very

apparent in the bottom section while the direction in the top section is less defined and seems more

random.

Figure 6. This image highlights the differences between bark in two different sections of the same Sycamore tree [26].
The bottom section looks almost regular with striations in the same direction, from the top left hand corner to the
bottom right hand corner. The top image looks more irregular with the overall direction of the striations harder to

recognise.

In starting this analysis of bark formation above, improvements can be made to the existing systems

texture mapping. Each tree could have its own generated texture instead of the single texture per

model. The single tiled texture can also be replaced by a few textures that tile together or a single

Page | 18

larger texture that covers the tree to reduce tiling. Further improvement can also be made to make

the direction of the features of the texture follow the structure of the tree (similar to the striations

in Figure2.)

3.1.4. Seamlessness

In the previous system, seams are created in two different situations. The first, is due to the tiling

approach to texture mapping that is used. A single texture is tiled across the surface of the tree. If

this texture was not created to be tileable then noticeable artefacts are created as shown in Figure7

and 8.

Figure 7. Two images are shown to illustrate tiling using a non-tileable image. Left is the sample image and right is

the resulting tiled image with seams.

Figure 8. Two images are shown to illustrate tiling using a tileable image. Left is the sample image and right is the

resulting tiled image without seams.

Page | 19

The second way that seams are created is at the joins of branches. The textures tiled over the join

area do not match between the two branches joined. This is illustrated in Figure 5.

To reduce the introduction of seams, two approaches can be used. The first is to use a synthesis

method that directly synthesises a seamless texture such as the method used by Wei and Levoy [6].

The second is to synthesise the texture directly onto the meshing , such as the method used by Turk

[9], which removes the effect of seams created over joins.

3.2. Performance

The previous system is used to created tree models that can be used in 3D applications. This allows the

user to build the tree model according to their specifications before using the model. The emphasis is on

the creation of an accurate tree model in a reasonable amount of time. This means that the application

should execute as fast as possible without the loss of realism.

The options available for texture synthesis are limited by the choices made in section 3.1 where an

example based texture synthesis method was considered preferable. . As seen in the previous chapter,

texture synthesis methods can vary from real-time to lengthy execution times. The accuracy of these

methods also varies greatly depending on the type of method and results required. To increase the

accuracy of the existing system, a slow accurate method is preferable to an inaccurate, fast method.

This rules out real-time texture synthesis methods such as the method by Lefebvre et. al. [20] due to

their inaccuracies. Similarly, pixel-based methods are not desirable due to the loss of global features of

the sample image during synthesis. For these reasons it is preferable to use either a patch-based or

pixel-patch based hybrid techniques for bark synthesis.

Chapter 4. Foundations
For this research we have chosen the technique presented by Han et. al. [27], commonly known as the

discreet solver [5]. This is a hybrid between pixel and patch based texture synthesis techniques. The

discreet solver is an expansion of the texture optimization technique [21]. This synthesizes a new

texture at a pixel level unlike other pixel-based approaches because every pixel is considered together

by optimizing a quadratic energy equation. The overall energy is determined by mismatches between

input and output images. Iteratively solving this function over an image minimises the energy over

subsequent iterations for a better quality image.

The discreet solver expands on this technique by synthesising the texture directly over a target mesh

and by introducing a more parallelisable technique for solving the energy equation. Both the texture

optimization and discreet solver techniques can be applied to flow animation texture synthesis.

However, in this work we will focus on synthesising a single texture.

The reasons for choosing the discreet solver for synthesising bark are as follows:

 The technique can handle many different types of textures while producing high quality results.

This is important for synthesising bark textures due to their inherent diversity and variation. As

Page | 20

shown in Figure 1. the resulting textures can have artefacts for highly structured images.

However, due to the stochastic nature of bark these artefacts will be hard to find.

 The discreet solvers parallelisable nature makes synthesis very fast for both CPU and GPU

implementations.

 By synthesising the bark texture directly over the tree model using the method described by

Turk [9], visual artefacts created around seams are removed.

Figure 9. This figure shows a comparison of the discreet solver and texture optimization techniques for 2D images. On the

left is the example texture, in the middle is the result from the discreet solver and the result from the texture optimization is
on the right.

4.1. Texture synthesis
As previously stated the texture optimization technique is a hybrid pixel and patched-based technique.

This method has lengthily execution times, however, it is considered to be a very good general-purpose

synthesis technique.

Page | 21

4.1.1. Texture Optimization

The texture optimization technique is algorithmically similar to Expectation Maximization (EM)

algorithm [28]. EM is used for optimization when the desired variables, as well as the parameters of

the energy function, are unknown [21]. The EM method iteratively alternates between solving the

desired variables and the unknown parameters. In this case the desired variable is the texture being

synthesised and the parameters are the set of input neighbourhoods. The texture optimization

algorithm can be divided into two steps, the E-step and the M-step as shown in Algorithm 1.

The E-step consists of the estimation of the energy of an image , where is the texture to be

synthesised. The E-step then tries to pull the values of the synthesised texture closer to the sample

texture. The M-step minimizes the energy by finding the neighbourhood in the sample texture that

is closest to each neighbourhood in the synthesised texture. The information gathered from the M-

step is then used for the estimation of the E-step. So from these two steps an iterative algorithm can

be created that minimizes the energy for the target texture providing better results after each

iteration.

 (1)

This represents the total estimated energy for over the subset of , . This is a least squares solver that

sums the error between the pixel neighbourhoods and . [21]

In the E-step the energy of the image is 's vectorised form. Similarly is the example texture and

 is its vectorised form. The vectorised form is found by concatenating the intensity values of each

pixel in . The estimation of is achieved by minimising the energy equation seen in (1). This

equation is a least squares solver that sums the error found between pixel neighbourhoods and

 for each pixel in , where is the most similar neighbourhood from the input texture to .

The set corresponds to a subset of where each pixel is spaced apart by a distance of

pixels, where is the width of the neighbourhood. The spacing is intended to avoid too close an

Page | 22

overlap of pixel neighbourhoods producing costly redundant calculations.

Figure 10. The energy of neighbourhood centered around pixel is given by its distance to the closest input

neighborhood . When two neighbourhoods and overlap, then any mismatch between and will lead to

accumulation of error in the overlapping region, shown in red [21].

The energy of Equation 1. is minimised by bringing each neighbourhood as close to as

possible. If two neighbourhoods and , surrounding pixels and , overlap then the intensity

values from the two neighbourhoods are averaged to provide a single intensity value for the

overlapping pixels.

The M-step minimizes Equation 1 with respect to by keeping fixed at the new values found in

the E-step. For each neighbourhood the nearest neighbourhood needs to be found. The

similarity is determined by the distance squared between and . This is accelerated through the

use of a tree structure and k-means clustering, where k = 4 [21]. K-means clustering is a method of

analysing clusters of data, by partitioning a number of observations into, k, clusters.

Texture Optimisation ___

Page | 23

Algorithm 1. The final iterative algorithm for texture synthesis using the E and M steps. [21]

__

This can be achieved through a set number of iterations or when the set no longer changes, as

seen in Algorithm 1. The algorithm can also be extended to synthesise at multiple resolutions and

neighbourhood sizes. Better results can be made by first synthesising at low resolutions followed by

a higher resolution synthesis from a scaled-up version of the resulting texture. In addition first

synthesising with large neighbourhood sizes captures large features in the input texture, followed by

refinement from smaller neighbourhood sizes capturing more local features.

4.1.2. The Discreet Solver

The discreet solver iteratively synthesises the texture in similar manner to the texture optimization

technique. The EM algorithm used by texture optimization is used as a base to build the discreet

solver. The discreet solver extends the texture optimization for texture synthesis through the use of

k-coherence. Coherence is introduced [18] to use the knowledge that clusters of pixels in the input

tend to remain together in the output image. K-coherence, introduced by Tong et. al.[29], aims to

provide a technique that improves the speed of synthesis while maintaining a high quality texture.

K-coherence achieves this by keeping record of similar pixels to each pixel. Each similarity set is

recorded for each individual pixel and is of finite size, k. K-coherence allows synthesis in linear time,

according to the size of the image, in comparison to a tree search, which is of complexity.

K-coherence is divided into two phases, analysis and synthesis.

K-coherence Analysis Phase

In the analysis phase a similarity set is built for each pixel in the sample image. The similarity set

is composed of other pixels in the sample image with similar pixel neighbourhoods to the

chosen pixel. This similarity set size is controllable and usually user defined a number in the

range of [2,11]. The chosen size determines the quality and speed of the image produced. A

small size will be much faster however noticeable breaks and artefacts in the synthesised images

are created. A higher number improves the quality of the synthesis at the cost of the speed of

synthesis. A size of 11 is generally considered to be the highest quality image with greater sizes

producing results that are considered virtually identical. In the synthesis phase a pixel is copied

from the input texture into the output texture. The pixels location in the sample texture is also

stored to easily access its similarity set. For each pixel being synthesised a candidate set is

created. The candidate set is created by adding the similarity set based on each pixel in the

neighbourhood surrounding the pixel to be synthesised. A pixel from the input texture offset

from the neighbourhood pixel's position contributes it's similarity set to the candidate set. This

offset is the opposite to the offset of the neighbourhood pixels position from the pixel being

Page | 24

synthesised. The candidate set is then used to find the best pixel for synthesis according to the

closest neighbourhood in the candidate set to the neighbourhood of the pixel being synthesised.

K-coherence Synthesis Phase

The analysis phase is introduced as a pre-process to the discreet solver to analyse the input

texture for coherence. K-coherence is also incorporated into both the E and M steps of the

texture optimization algorithm. Specifically tree structure with k-means clustering used in the

M-step is replaced with a k-coherence search. In addition a new approach for the E-step is

created to replace the least square solver. This forms a new algorithm that is considered to be a

discreet optimization. as shown in Algorithm 2. To compute in the new E-step each value

 is determined independently by finding a value in the candidate set { . A candidate is

chosen from the k-coherence candidate set that minimises the energy function. The candidate

pixel and its input texture position are copied directly to . The independence between

synthesising each pixel makes this ideal for parallelisation. The new algorithm also removes

blurring that would occur due to the blending between overlapping pixel neighbourhoods.

Page | 25

Discreet Solver __

Algorithm 2. The final discreet solver algorithm for texture synthesis using k-coherence.

__

4.2. Surface Texture Synthesis
There are two main methods for placing a texture over the surface of a mesh. The first is through

texture wrapping where a flat texture is wrapped around the mesh. This technique however suffers

from texture seams and distortion. Texture seams are created where the edges of the texture meet. This

can cause visual artefacts when the edges do not match across the seam. Usually this is combated by

making a texture seamless. Distortion is also created due to stretching a rectilinear texture over the

meshes surface to fully cover the whole surface. The second method is to directly create the texture

onto the meshes surface. Most commonly artists 3D model packages to draw directly onto the surface.

This information is then directly mapped to a texture atlas through UV or texture coordinates. However

this requires careful unwrapping of the models shape onto a flat plain. Similarly a texture can also be

synthesised directly over a target mesh to remove the seams and distortion of texture wrapping.

4.2.1. The Discreet Solver

The discreet solver uses the method described by [9] to synthesise the texture directly over the

meshes surface. This technique uses a point colouring method to synthesise the texture according to

the layout of points across the surface. This is achieved through the use of a vector field covering the

surface of the mesh, where there is a vector tangent to the surface at each point. Finally the vector

field is used for indexing across the meshes surface so that the methods for texture synthesis can be

easily used. The vector field allows the synthesis method to navigate up, down, left and right

between pixels akin navigating a flat texture.

It is near impossible to create a regular grid of points over an arbitrary mesh surface. Instead points

are evenly spaced over the surface of the mesh in an irregular arrangement. A point hierarchy is

created through a point relaxation algorithm[30]. This is done by placing points over the surface at

random and space these over the surface evenly by using repulsion. These first points are then

fixed and will become the lowest level of the mesh hierarchy. Next new points are placed over

Page | 26

the meshes surface. These points are repelled from each other and the first points and set in place

to create the next level of the hierarchy of a total of 4 points. This process continues to create the

next mesh of points and so forth until the required amount of levels are completed. Once all

points have been placed the mesh connectivity needs to be created. This is created by projecting the

points onto a tangent plane and performing Delaunay triangulation.

Each point in the hierarchy contains information for the colour of the texture as well as the vector

field orientation. The vector field is created by a few basis vectors placed over the surface, usually

user specified or created from inherent knowledge of the model. The vector field is then

interpolated from these basis vectors over the entire surface. This interpolation is achieved by

performing a down sampling operation over the mesh to bring the basis vector values through to

the highest level (lowest resolution) of the point hierarchy. The non-zero vectors in the mesh are

then interpolated according to its surrounding vectors until every vector has a value. The vector

values are then up sampled into the lower levels of the hierarchy, normalising the vectors at each

level.

Once the vector field is created it is then used to order the pixels on the surface. This allows a

process of surface sweeping to occur over the target mesh. This is created by assigning a sweep

distance to each vertex according to an arbitrarily chosen anchor vertex. This is calculated again for

the vector field rotated 90 degrees from its initial orientation. The distance is calculated between

each vertex connected to another vertex in the mesh. The distance is found by measuring the

distance between each vertex according to the average orientation the vertices field vectors. This is

once again calculated at the highest resolution and up sampled throughout the hierarchy. From

these distances the vertices are sorted to according to their distances. These sorted lists create the

regular indexing for texture synthesis.

Chapter 5. Implementation
This chapter aims to provide a thorough explanation of the new features built to improve the variation

and realism of bark. Improvements to the existing system include the addition of the Discreet Solver by

Wei et. al. [27]. This technique was chosen as it fitted all the requirements as specified in Chapter 4. The

implementation of the discreet solver is limited to the 2D texture synthesis only. This is due to the

difficulty in the implementation of the surface texture synthesis and the constraints in the scope of the

project. This chapter first gives an overview of the system, including the interaction with the previous

system as well as the general workflow of the texture synthesis method. This is followed by a thorough

explanation of the texture synthesis implementation and the discreet solver algorithm used.

5.1. System Overview

The existing system was programmed in the C++ programming language and built using the Qt frame

work [31] for the graphical user interface (GUI). The system was built specifically for the Linux operating

system but is extendable to both Macintosh and Windows operating systems. To fit into the existing

system, the new features are also programmed in C++ and use Qt for additional GUI elements. The

Page | 27

existing system had additional dependencies including the boost C++ library. OpenMP [32] is added to

the system as a new dependency for our additions. OpenMP is used for parallel programming as an

alternative to QThreads provided by the Qt framework. OpenMP was chosen over QThreadsbecause of:

the ease of parallel programming provided by the #pragma directives, prior experience with OpenMP, as

well as the portability of OpenMP.

5.1.1. Integration into the existing GUI

The new texture synthesis method is attached to the existing system through an added synthesis

GUI button. Once the button is clicked the synthesis algorithm that computes a new surface texture

for the tree model can begin. A new pop-up dialog appears, as shown in Figure X, for the synthesis

input. The synthesis input consists of the example texture, synthesis speed/quality and output

texture size parameters. The example texture is chosen through the standard QFileDialog provided

by the Qt framework. Synthesis speed/quality is set by using the slider provided by the synthesis

dialog. The output size parameters are set through two spin-boxes, provided for input values. The

spin boxes correspond to the pixel width and height of the texture resulting from the synthesis

process.

5.1.2. Workflow for the texture synthesis

The entire workflow for the texture synthesis is summarised in Figure 12 to give a high-level

overview of how the system works.. The workflow begins with a user provided sample image as well

as synthesis information. This information is then passed to the texture synthesis class, which begins

by creating a matrix of coherent textures. These textures contain coherence information, that is

used by the discreet solver. The matrix is made from coherence textures of each neighbourhood size

for each resolution of the sample image. Once the coherence textures have been created from the

sample image the TextureSynthesis class creates a randomly patched texture at a low resolution to

initialize the discreet solver to begin. The random texture is created from random patches chosen

from the sample image. An indexed texture is created from each pixel in the random texture. Each

pixel from random texture stores its position in sample image, which is saved into the indexed

texture.

Page | 28

Figure 11. Workflow for the texture synthesis.

Once the discreet solver has both the sample and the coherence textures it may begin synthesising a

similar texture to the sample image. The information provided by the coherence textures is used to

synthesise a texture, with the random texture as a basis, that is closer to the appearance of the

sample image. This is achieved iteratively with each iteration bringing the image closer in

appearance to the sample. After iterations at the initial synthesis resolution the resolution is

increased. The resolution is increased and synthesised until iterations have been applied at the

required resolution, obtained in the synthesis information. The resulting texture is then saved once

completed.

5.2. Texture synthesis implementation
The texture synthesis implementation is split into different sections organised by a central class called

TextureSynthesis. This class calls different methods, which contribute to the overall synthesis process.

The structure of the synthesis program is illustrated by the class diagram in Figure X. The main methods

that are used in the Texture Synthesis class to load an image and synthesising. These methods,

respectively control the analysis and synthesis phases of the discreet solver.

Page | 29

The image loading method takes the path of the texture to be loaded as a parameter. The image is

loaded from this path and then stored as a Texture and collection of CoherenceTextures. These

coherence textures are then used during the synthesis stage. After the LoadImage method has been

called, the synthesis method follows immediately. The synthesis method first creates a random texture

which is used as the basis for the coherence. Once the random texture is created then the synthesis

process begins by iteratively solving the textures energy through the discreet solver. This generates a

texture closer in energy and appearance to the sample image.

The remainder of this chapter will explain each step in further detail. First, the different texture types

are discussed, including why they are important and how and where they are applied. The creation of

the Gaussian hierarchy is then explained.This is followed by a short explanation of how the random

texture is created. Finally, the implementation of the discreet solver is explained in detail.

5.2.1. Textures

The texture synthesis implementation requires the storage and manipulation of many images. All

these images have the same basic storage structure and manipulation requirements. However, each

texture has more advanced requirements that are not used by all other textures. For this reason a

base class called Texture is created, that is extended by child classes. The parent class Texture

provides storage of the pixel data for each image through a two-dimensional array of QRgb pixels.

The QRgb class is a pixel class provided by the Qt framework that contains the intensity values for

each pixel. These intensities are stored as integer values for each colour; red, green, blue and alpha.

These values are in the range , where the value 0 is the lowest intensity and the value 255 is

the maximum intensity. The array of pixels in the texture can be accessed directly for manipulation

at a per-pixel level.

The parent class Texture is extended by two different child classes. These classes are the

IndexedTexture and CoherenceTexture classes. These child classes are completely separate and

extend the texture class in different ways.

Coherence textures

Coherence textures are created during the analysis phase of the discreet solver. This phase

finds the k-coherence matrix for each pixel in the coherence texture. The k-coherence matrix for

a pixel is the set of pixels with the most similar neighbourhood of pixels to the pixels own. The

size of the set, k, is determined from the synthesis information passed to the TextureSynthesis

class. The set is stored in the CoherenceTexture class in the form of two-dimensional array of

PixelCoherence objects.

PixelChoherence

The PixelCoherence class contains a list of k pixels for each neighbourhood size. These lists

correspond to the coherence sets of the pixel. The PixelCoherence class constructs the sets from

its corresponding CoherenceTexture class. The set is determined by finding the distance

Page | 30

between neighbourhoods for every pixel against every other, for a set neighbourhood size. This

is an exhaustive search in which each pixel checks against all others . This is of

complexity, where is the number of pixels in the texture. The distance between the

neighbourhoods is found by the Euclidean distance between each corresponding pair of pixels in

the neighbourhood, as shown in Algorithm 3.

Pixel Coherence___

Algorithm 3. The algorithm to find the coherence set for each pixel, . Where is the pixel being

checked against and is a set of pixels in the texture. The pixels and are the pixels from pixel

neighbourhoods respectively. The values , and are the intensity values of the

red, green and blue colours for pixel respectively.

__

The neighbourhood sizes are determined from the coherence texture size. The starting

neighbourhood size is a 9x9 matrix of pixels. If the next neighbourhood size, double the previous

size, is less than a quarter of the area of the texture then a new coherence set is created for that

size. This terminates when the neighbourhood size exceeds a quarter of the area of the texture.

Creating the collection of coherence textures

The exhaustive search as shown above can be executed very quickly for small images of less

than 64x64 pixels. However, due to the complexity of the search the execution time of the

algorithm grows exponentially. This can be reduced by introducing a Gaussian hierarchy of

images. If the sample images width or height is larger than 64 pixels than a copy of the image is

created at half the size of the image. If the copy's width or height remain larger than 64 pixels

then the process of downsampling is repeated. This is done until we are left with a texture that's

width and height are smaller than 64 pixels. All of the copies that are made are kept to form the

Gaussian hierarchy.

Page | 31

When an image is halved the pixel values for the new image are created from the original image

using a Gaussian blur matrix. This matrix is a 2x2 window that is moved across the surface of the

image, with the window never covering the same spot twice, as shown in Figure 12. The colour

of the pixel in the copy is created from the weighting of the Gaussian blur matrix. For a simple

2x2 window the weightings are all equal. Therefore the resulting colour is just the average

colour of the four pixels.

Figure 12 This diagram shows the how a copy of an image, half the size of the original, is created from a Gaussian

blur of size 2x2. The weighting for each pixel is shown in white on a black pixel and the resulting pixel is highlighted
in red. The next pixel to be blurred and the corresponding pixel window are shown in gray.

Once a hierarchy of images is created, a hierarchy of coherence textures can be constructed.

The first coherence texture finds its coherence sets for the lowest resolution image through an

exhaustive search as usual. The next coherence texture in the hierarchy finds its coherence sets

from the sets found in the previous coherence texture. Each pixel creates its coherence set from

the pixels in its own image that correspond to the other coherence set. This is illustrated in

Figure 13. below.

Figure 13. This image illustrates construction of a coherence texture from a previous coherence texture. The image
to be synthesised is on the right, while its corresponding image in the lower resolution is on the left. Assume that
the size of the coherence set is 1. The single gray block in the low resolution image corresponds to the coherent

pixel to the red pixel. The four gray blocks on the right are the pixels the black pixel must now use to find its
coherence set.

The Indexed textures

Indexed textures are created from the textures constructed in the analysis phase of the discreet

solver. The indexed textures work by copying individual pixels directly from the source. The

Page | 32

IndexedTexture class extends the Texture class by keeping a record of each copied pixels

corresponding position in the source texture. When indexed textures are edited or created from

other indexed textures, the changed pixel as well as the position from the source texture is

copied. To maintain a consistent indexed texture the pixels, as well as their corresponding

positions, must remain the same as the source texture at all times.

5.2.2. The synthesis method

The synthesis method synthesises a randomised image by using the discreet solver. The synthesis

method and solver are only run once the loadImage method has been called at least once. This is

because the solver needs an example image loaded and analysed into a hierarchy of coherence

textures. Before a random texture is created, the size of the output texture is divided to create a

hierarchy of synthesis sizes. This is done in the same way that the hierarchy is made for the

coherence texture, continually dividing the texture in half if either width or the height is greater

than 64.

Creating a random texture

The first thing the synthesis method does after the hierarchy, is create a randomised indexed

texture. This is created by dividing the lowest resolution coherence texture into sub-patches. The

patches are a subset of the texture with a size of an eighth of the full texture. Patches are used

instead of random pixels from the texture so that a sense of structure is still passed from the

original. However, this is not a requirement as any randomization is suitable for synthesis. This is

provided the indexed information is retained from the coherence textures pixel positions. From the

set of sub-patches a full indexed texture is made in the size of the lowest resolution of the synthesis

hierarchy. This is created by tiling the patches randomly to create the full sized texture.

Calling the discreet solver

Once the random or output texture is created then the synthesis via the discreet solver can begin.

The iterative synthesis process then begins on the random texture. The discreet solver is called to

iterate on the texture for each neighbourhood size. The sizes are determined by the coherent

texture being used by the output texture. Once all of the iterations have been run for each

neighbourhood size then the output texture is up-scaled. The up-scaling process is the inverse

operation to the halving seen in the section on coherent textures. The four corresponding pixels,

from the higher resolution coherence texture, are copied into a texture double the size. This creates

a new output texture completely from the higher resolution coherence texture. This continues and

is further up-scaled and iterated over output size is equal to the desired size.

5.2.3. The discreet solver

The discreetSolver is a method in the TextureSynthesis class and is called from the synthesis method.

The discreet solver optimizes a function according to the energy of an equation measuring the error

of the synthesised image. By optimising the texture energy iteratively the image is synthesised to be

increasingly similar to the sample texture after each iteration.

Page | 33

The iterates over the image calculating the closest neighbourhood in the output texture to the

neighbourhood in the sample texture. The pixels in the closest neighbourhood calculation lie

within the set , a subset of the input image . is a subset where the pixels start at co-

ordinate (0,0) in the texture. The next neighbourhoods are spaced pixels away, in the and

directions, to provide enough overlap between pixel neighbourhoods.

Figure 14 This figure illustrates the candidate set choice from overlapping neighbourhoods. The red pixel in the right image is
the pixel being synthesised. Its candidate set is created from the gray neighbourhood that overlaps the pixel (the green pixel
marks the centre of the neighbouhood). From the candidate set each candidate pixel (the green, centre pixel) is used to find

the corresponding pixel (in red on the left) to the pixel being synthesised. The distance between these pixels is used to
choose if the corresponding pixel is to replace the pixel being synthesised.

Once all of the closest neighbourhoods in have been found then the algorithm begins to find the

best matching pixel, for each pixel in the output image. A candidate set is created from the k-

coherence set of each of the neighbourhoods in , that overlap across the point being synthesised,

as illustrated in Figure 14. The best matching pixel is a pixel chosen from this candidate set that

minimizes the energy equation. Which is the closest total distance to each neighbourhood (the sum

of all distances from a point to its corresponding point in each neighbourhood).

Chapter 6. Evaluation
The evaluation of this research is separated into user and performance testing. The user testing itself is

composed of two different rounds. The first round consisted of expert realism testing and took place

after the first prototype of the system. Feedback from this round of testing was qualitative in nature.

The second round consisted of standard realism testing which took place just before the final system

was complete. The null hypothesis for the results of the realism testing was that there is significant

difference between the realism of the sample and synthesised textures . Feedback from this round of

testing quantitative in nature with parts which were qualitative. This chapter explains the expert and

standard user testing as well as performance testing. This includes the design, procedure and results for

each type of testing.

Page | 34

6.1. Expert User Testing
People considered to be expert users were invited to participate in the first round of user testing. Expert

users were chosen to be part of the study if they have had prior experience with computer graphics and

the algorithms involved. The selection consisted of computer science lecturers and post-graduate

students. The expert testing was intended to improve the understanding and design of the requirements

before further implementation. This helped remove the cost of changing an already developed system.

6.1.1. Design

The format for the expert testing was designed to occur early in the development lifecycle and was

kept informal. This informality was intended to reduce the overhead of designing and running a full

experiment during crucial development time. Due to this informality and the small selection of

expert participants, ethical clearance was also not needed. The reason that the first round testing

occurred so early in development, was so that design flaws and conceptual inconsistencies could be

ironed out early-on. For this reason The interviews consisted of the following:

 An explanation of the prototype to be presented, as well as the plan for the full system.

 A demonstration of the prototype, and

 Feedback from the participant.

This demonstration of the prototype included examples of textures produced from synthesis. The

synthesised textures are created from a small set of bark textures with a large variation of feature

types and sizes. The variation of features, tests the robustness of the synthesis technique used,

while the difference in sizes tests the stability and performance of the system.

6.1.2. Procedure

The participants were recruited by emailing an invitation. Each participant was interviewed

separately to focus on the feedback from each expert and remove external influences on the

interview. Once a participant arrived they were briefed about the overall project. The participants

were encouraged to ask questions and give advice throughout the interview.

First, an explanation was given about the existing system (Tree Draw). This was followed by a

discussion of the new system and what it should ideally achieve. After the discussion another

explanation was given about the prototype being demonstrated. The demonstration of the

prototype was given immediately after explanation. Finally, the participants were asked for any

closing advice or input on the remaining implementation and design of the system.

6.1.3. Results

The results of the expert testing highlighted strengths and weaknesses in the prototype.

Strengths

 The discreet solver was seen to have the potential to fulfil all the requirements.

 Local structure was maintained and features from the sample image were visible.

 The performance was seen to be reasonable in comparison to experience with other

synthesis techniques.

Page | 35

Weaknesses

 Many of the participants were concerned that all of the intended features might not feasible

for the scope of the research.

 The prototype produced noticeable repeating patterns and a loss of global structure.

 While the performance was reasonable it was not yet as fast as the discreet solver could be.

From the strengths and weaknesses it was decided that implementation should continue on the

discreet solver. The prototype did not feature a resolution and neighbourhood size hierarchy, which

was recommended to maintain global structure. Further optimizations should be investigated to

enhance the speed of the algorithm. It was decided that additional features should only be

implemented if they fitted into the scope of the research. These additional features include:

synthesising the texture directly over the mesh and normal or displacement maps.

6.2. Final User Testing
The final user testing was conducted to evaluate the results of the completed system. The results from

the discreet solver were compared against the sample textures used in synthesis. The two textures are

compared according to how similar they look to real bark textures. Users were recruited to participate in

the experiment through poster advertisements. The user population group was limited to students

currently studying at the University of Cape Town. To be able to recruit students, access to students and

ethical clearance was applied for and granted by the Department of Student Affairs and the Faculty of

Science Research Ethics Committee respectively. These were both obtained before user test recruiting

began. Both documents are available in Appendix A and B. The posters were placed across the university

campus to attract students from different backgrounds and fields of study. An offer of R30 per person

for their evaluation was also used to try attract participants. The students then contacted the

researchers through the contact information provided on the poster and signed up for a testing slot. In

each testing slot the users were given a set of tasks to complete. The tasks were given out digitally

through a program designed for the user testing.

6.2.1. Design

Feedback from this round of testing was quantitative in nature with parts which were qualitative.

The null hypothesis for the results of the realism testing, was that there is significant difference

between the realism of the sample and synthesised textures. A t-test is used to try and disprove this

result. The type of test used is a two-sample test assuming equal variances.

The evaluation platform for the final user testing was an interactive program. Each user's session

consisted of three different sections To evaluate the results of the texture synthesis and capture

demographic information. The first section required the user to rate a set of images (sample images

obtained from the paper by Liang et. al. [12]). The second asked the user to provide comments on

these images. Finally, the third section asked the participant for information about themselves.

Page | 36

Section 1

This welcomes the user and explains the format of the program. Once the user selects the button

labelled "Begin" the first section begins. This consists of a rating system for displayed images. The

section is separated into a set number of questions. A single image is displayed per question,

chosen from a selection of images. The selection of images consist of images of bark, as well as

images produced by the synthesis. The program randomises the order of the images in the

questions as a pre-process before the user begins the section. Randomisation provides control over

the sequence of events, ensuring that effects produced by a specific order do not occur with every

subject. Each question has an adjustable realism rating from 0-100 situated below the image, as

shown in Appendix D. The user is able to change the rating of the images with a score of 0

considered "not at all realistic", and a score of 100 considered "highly realistic". The participant may

change the rating of the displayed image by using the slider or by entering a number into the spin-

box provided. Once the rating is set the participant may continue to the next image by pressing the

"Next" button.

Section 2

Once all of the questions in the first section have been completed the second section will begin

automatically. This displays an image, similar to the first section, however, the rating system is

replaced with a comment box. Two images, with the lowest ratings, are selected from the first

section. Only the two lowest ratings were chosen to limit the size of the comment section, while

retaining the most important information. This also reduces the time that each person needs to

spend on the comments section, as commenting can take considerable time. The participant is

asked to provide a comment for the images, explaining why they have received low scores. Once a

comment has been given the participant may continue by pressing the "Next" button.

Section 3

Once the two images have received comments in the second section, the evaluation automatically

continues to the final section. This consists of a single page with multiple questions. The participant

is asked information about themselves that may provide insight into their answers. The information

is recorded through written comments, values placed into spinboxes, as well as toggle-button areas.

The following questions are asked in section 3:

 The age of the participant.

 The main field(s) of study pursued by the participant.

 How much experience the participant has with the botanical sciences.

 How much experience the participant has with computer graphics.

 How much experience the participant has with 3D modelling packages.

 How much experience the participant has with computer games.

Page | 37

Saving and loading sessions

When a user begins a session the program automatically creates a save file, named uniquely. This

makes the task of acquiring the information for analysis much easier. To keep the anonymity of the

participant each file is named according to its session and computer numbers. The computer

number is determined from a configuration file which is set by the session moderators. The session

number is determined from the save files already contained in the "Save Files" directory. Each new

session determines its number as the next highest session number, with the first session starting

with the number 1. This results in session numbers starting at the number 1, incrementing until the

number of sessions created. In addition to the standard session numbers a backup save file is

created to prevent loosing data in the event the computer or program stops during the save process

The session is saved each time the "Next" button is pressed in-between pages. The save files contain

all of the important information from a session, so that a session can be reloaded in the case of a

fault in the program. The information is separated by placing each page on a separate line.

Individual pieces of information on a page are separated by commas.

The format for a save file is as follows:

 Key:

 // - Comment line, which is not a part of the format.

 [Number, Number2] - A number in the range between, and including, Number and

 Number2.

 . - An unknown number of additional lines in the same format as the line above.

 Format:

Section Name

//Start of the rating section

The image name for the question, the rating for the image [0,100]

The image name for the question, the rating for the image [0,100]

.

.

.

//Start of the comment section

The image name for the question, the rating for the image [0,100], the comment for the image

The image name for the question, the rating for the image [0,100], the comment for the image

.

.

.

//Start of the personal information section

The participants area of study, age, [0-999], gender, [0,1], experience in Botany, [0,4], experience in

Computer Graphics, [0,4], experience in 3D modeling, [0,4], average hours spent playing games per week,

[0,999], the number of years playing games for, [0,999],

Page | 38

An example of the save file format:

Bark

FileName,Image1.jpg,Score,50,

FileName,Image2.jpg,Score,50,

Lowest, Image1.jpg,Score,50,Comment,This is a comment,

Lowest,Image2.jpg,Score,50,Comment, This is a comment,

Branches

FileName,Image1.jpg,Score,50,

FileName,Image2.jpg,Score,50,

Lowest, Image1.jpg,Score,50,Comment,This is a comment,

Lowest,Image2.jpg,Score,50,Comment, This is a comment,

Leaves

FileName,Image1.jpg,Score,50,

FileName,Image2.jpg,Score,50,

Lowest, Image1.jpg,Score,50,Comment,This is a comment,

Lowest,Image2.jpg,Score,50,Comment, This is a comment,

StudyDetails,ComputerScience,Age,23,Gender,0,Botany,2,ComputerGraphics,4,Modeling,1,GameHoursPe

rWeek,8,GameYears,17,

6.2.2. Procedure

The venue used for the evaluation was a small computer laboratory containing a selection of

computers. The computers available were three dual-boot Windows/Ubuntu PC's of similar

specifications. The evaluation program was built specifically for the Ubuntu operating system, so

each computer needed to be booted into Ubuntu and the program installed beforehand. In the case

of a double booked appointment a laptop running the program in Ubuntu was used. Before the

experiment begins, users are given a briefing about the evaluation. The users are given a short

description of the previous system and what it achieves. This is followed by an explanation of what

the new features are trying to add to the system. After the background explanation an overview of

the format of the evaluation takes place. For this research it was explained that we would like to

improve the bark textures of the tree models generated by the old system.

Once the explanations were completed the participants were asked to fill out a consent form. After

this they began their evaluation using the program. The participants continued with the evaluation

and were allowed to ask the moderator questions at any point. Once the user was finished they

would need to let a moderator know. The users would be paid R30 for their participation and sign a

proof payment for the moderator. This was finally finished off by inquiring if the participant had any

additional questions, and then thanked for their participation.

Page | 39

6.2.3. Results

Pilot test

Before the main testing began a pilot test consisting of three users was run to test the procedure of

the evaluation and the stability of the program. Three users participated in this pilot study. From

this two different faults were found with the implementation of the program. Firstly the program

did not parse the comments section properly, resulting in only the first word of the comment being

saved. The second fault occurred in the loading and saving of the session. When a session was

loaded, it would not load all of the information correctly. Then when the program would to try to

automatically save the session the program would crash and corrupt both the save file and the

backup.

Main test

Demographic data and sample significance

As the realism is assumed to stay the same between the real and synthesised images, a two-tailed t-

test was used to test for significance. Using a significance level of 0.05, it was calculated that a

minimum population size of 21 participants was required. The final population size for the study,

was 35 users. The age range for the population was [18-24] years old, with the average age of the

participants at 21. The gender of the population was split roughly 1:4, with 9 males and 26 females.

Test for normality

The distributions, for both real and synthesised images, are created from the mean values of each

image type. Before a t-test could be run over the real and synthesised population groups, a check

for normality was used. The normality test was calculated through the Shapiro-Wilk method, using

the R statistical package. Shapiro-Wilk tests the null hypothesis that a sample came from a normally

distributed population. The values for were found to be 0.9498 and 0.9154, with a values of

0.7275 and 0.4345 respectively. The values were compared to an alpha value threshold of 0.05,

and it can be concluded that the null hypothesis for both populations cannot be rejected. Therefore,

each population group come from a normal distribution.

T-test for the population groups

A t-test is now calculated for the real and synthesised distributions, as shown in the Box and

Whisker plot in Figure 15. The mean values for each population are 45.8968254 and 40.81349

respectively. The t-test used is a two-tailed, assuming equal variance test. The t-stat value calculated

is 0.688949552, while the value for the two-tailed test was found to be 0.503958297. This is much

larger than the alpha constraint of 0.05. Unfortunately for this reason the null hypothesis cannot be

rejected. This means that the two distributions cannot be assumed to have equal realism. From this

information and value of the mean it can be concluded that the synthesised images are less realistic

than the sample images.

Page | 40

Figure 15 A box and Whisker plot for the distributions real and synthesised image respectively. The grey crosses represent
the median values for the distributions, while the blue lines represent the first and third quartiles (Q1 and Q3).

6.3. Performance Testing
Due to the parallel nature of the discreet solver specific tests need to be run to test how parallelised the

implementation is. By testing the performance over a number different threads we are able to

determine how useful the parallelisation of the technique is. The criteria used to measure the

parallelisation are: the speed-up gained through parallelisation and the efficiency of the parallelisation.

6.3.1. Design

To measure the performance of the new parallel code we will be using the speedup associated to

the best sequential method. Speedup is defined as

 where is the speed up with

processors, is the best sequential execution time (not using any parallel methods) and is the

parallel execution time. Another metric associated with parallel algorithm analysis is the efficiency

of the parallel method. Efficiency is defined as

 where is the efficiency of processors,

is the speed up with processors and is the number of processors.

6.3.2. Procedure

For each test the same sample image was used as a benchmark for the calculations. The calculations

were run on a single laptop running the Ubuntu operating system. The specifications for the laptop

are as follows: a Quad Core Intel i7 2.00Ghz with hyper-threading and 8GB of DDR3 Ram. The hyper-

threading of this particular laptop creates a processor having 8 logical cores for testing.

0

10

20

30

40

50

60

70

Real Images Synthesised Images

Box and Whisker Plot

Min Outlier Max Outlier Median

Page | 41

The testing was run by first measuring the time taken to execute the sequential method. This was

followed with the parallel OpenMP solution with a variable number of threads used. The number of

threads, , is in the range of [2,8] with regular increments. The QTime object provided by qt was

used to track the time taken for each

6.3.3. Results

The results for the speedup and the efficiency are graphed below. The same sample image of size

80x80 pixels was analysed and then another images was synthesised at 30x30 pixels. The results for

each of these methods are placed on the same graph for comparison.

Figure 16 The time of execution for analysis and synthesis, graphed against the number of threads used.

Figure 17 The speedup for analysis and synthesis, graphed against the number of threads used.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8

t
-

Th
e

 e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

n - The number of threads

Analysis

Synthesis

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7

Sn
 -

 T
h

e
 s

p
e

e
d

u
p

n - The number of threads

Analysis

Synthesis

Page | 42

Figure 18 The efficiency for analysis and synthesis, graphed against the number of threads used.

6.4. Testing conclusion
From the expert testing conducted it was determined that the discreet solver would fit all of the

requirements highlighted in chapter 3. It was also decided that each of the intended additional features

would most likely not fit into the scope of the thesis, and should only be implemented once the discreet

solver was fully implemented.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

En
 -

 T
h

e
 e

ff
ic

ie
n

cy

n - The number of threads used

Analysis

Synthesis

Page | 43

Figure 19 Two examples of failed synthesis results produced by the discreet solver in the realism testing. The examples
shown are the sample images [left column] [12] and the synthesised images [right column]. The synthesised images were

discovered to be inaccurate due to an error in implementation, where the sampled neighbourhoods were situated tightly in
the middle of the sample image. This resulted in the obvious repeating patterns visible throughout the images.

The final realism testing measured the assumption that the realism of the synthesised images were the

same as the real images. It was concluded through the use of t-tests that the distributions were

different, with the sample images having a higher realism than the synthesised images. It was

discovered later that an error in the solvers implementation caused repeating patterns in the

synthesised images, as seen in Figure 16. Since this implementation it is assumed that the realism is

increased from further development. However, this cannot be proven conclusively without further

testing. Additional examples of synthesised textures from the discreet solver are shown in Appendix C.

The results produced during the performance testing conform to the expected results from

parallelisation. The execution time drops drastically with the introduction of threads, however, it quickly

plateaus after four threads. This is mirrored in the speedup and efficiency graphs, as the speedup is

gained quickly and begins to plateau, similarly for the efficiency. This is expected due to the increasing

overhead created from thread organisation and synchronisation, when the thread count begins to get

very large.

Chapter 7. Conclusion
The demand for varied and realistic 3D assets has created many solutions for the procedural generation

of models. TreeDraw is one such solution that addresses the procedural generation of tree models. It

addresses the problem of procedurally generating trees that accurately fit the specifications provided by

users. Users create a basic sketch of a tree, which is then interpreted by L-systems to create 3D tree

models with similar structure to the base sketch.

Project Yggdrasil aims to extend the work found in TreeDraw by creating more realistic tree models. This

is achieved through three different areas: subdivision surfaces, procedural leaf generation and texture

synthesis. This thesis aims to focus on the investigation of texture synthesis for the generation and

variation of bark textures. Through background research and expert testing it was decided that the

discreet solver, an example-based synthesis technique, would fit the criteria of all of the texture

improvements. These improvements include creating seamless bark textures that are similar in

structure and realism to a sample image. The discreet solver was implemented to provide seamless 2D

textures that resemble the sample image as accurately as possible.

Page | 44

From user testing, flaws in the accuracy of the implementation were highlighted. These flaws were fixed

and it is assumed that the accuracy and realism of the solver fit the requirements adequately. However,

further testing is needed to prove these results. Other improvements can also be added, but these are

out of scope for this thesis and are set for future work.

7.1. Future Work
Future work for the texture mapping for project Yggdrasil include:

 The addition of normal/displacement mapping to increase the realism of the textures in 3D.

These techniques use texture mapping displace the geometry and vertex normal's of a 3D model

to produce bumps and surface features.

 Synthesising the bark texture directly over the target mesh, using the technique applied in the

discreet solver. This technique can remove seams created across the joins of branches during

texture mapping.

Page | 45

Chapter 8. References

[1] “SpeedTree.” [Online]. Available: http://www.speedtree.com/. [Accessed: 22-Oct-2012].

[2] M. Black, “A sketch-based interface for realistic tree generation with variation,” University of
Cape Town, 2011.

[3] A. Lindenmayer and P. Prusinkiewicz, The Algorithmic Beauty of Plants. 1990, pp. 1–46.

[4] M. Runions, Adam Fuhrer, B. Lane, P. Federl, A.-G. Rolland-Lagan, and P. Prusinkiewicz,
“Modeling and visualization of leaf venation patterns,” in Proceedings of ACM SIGGRAPH 2005,
1999, pp. 702–711.

[5] L. Wei, S. Lefebvre, V. Kwatra, and G. Turk, “State of the art in example-based texture synthesis,”
in EG-STAR, 2009, no. Section 2, pp. 93–117.

[6] L. Wei and M. Levoy, “Fast Texture Synthesis using Tree-structured Vector Quantization,” in
Proceedings of the 27th annual conference on Computer graphics and interactive techniques
SIGGRAPH 00, 2000, pp. 479–488.

[7] K. Perlin, “An Image Synthesizer,” ACM SIGGRAPH Computer Graphics, vol. 19, no. 3, pp. 291–
300, 1985.

[8] S. Worley, “A Cellular Texture Basis Function,” in Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH 96), 1996, pp. 291–294.

[9] G. Turk, “Texture Synthesis on Surfaces,” in Proceedings of SIGGRAPH ’01, 2001, pp. 347–354.

[10] X. Zhang and Y. J. Kim, “Efficient texture synthesis using strict Wang Tiles,” Graphical Models, vol.
70, no. 3, pp. 43–56, May 2008.

[11] A. A. Efros and T. K. Leung, “Texture Synthesis by Non-parametric Sampling,” in Computer Vision.
The Proceedings of the Seventh IEEE International Conference, 1999, vol. 2, pp. 1033 – 1038.

[12] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-time texture synthesis by patch-based
sampling,” ACM Transactions on Graphics, vol. 20, no. 3, pp. 127–150, Jul. 2001.

[13] V. Kwatra, I. Essa, and A. Bobick, “Graphcut Textures : Image and Video Synthesis Using Graph
Cuts,” ACM transactions on graphics, vol. 22, no. 3, pp. 277–286, 2003.

[14] Y. Liu, “Near-regular texture analysis and manipulation,” ACM Transactions on Graphics (TOG),
vol. 23, no. 3, pp. 368–376, 2004.

[15] Y. Zhang, Z. Sun, and W. Li, “Texture synthesis based on Direction Empirical Mode
Decomposition,” Computers & Graphics, vol. 32, no. 2, pp. 175–186, Apr. 2008.

Page | 46

[16] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen, “Wang Tiles for Image and Texture Generation,”
in Proceedings of SIGGRAPH ’03, 2003, pp. 287–294.

[17] T. Ngt, C. Wen, T. Tan, X. Zhang, and Y. J. Kim, “Generating an ω -Tile Set for Texture Synthesis,”
in Proceedings of the 23rd Computer Graphics International, 2005, pp. 177–184.

[18] M. Ashikhmin, “Synthesizing natural textures,” in Proceedings of the 2001 symposium on
Interactive 3D graphics - SI3D ’01, 2001, pp. 217–226.

[19] A. A. Efros and W. T. Freeman, “Image Quilting for Texture Synthesis and Transfer,” in
Proceedings of SIGGRAPH ’01, 2001, pp. 341–7.

[20] S. Lefebvre and H. Hoppe, “Parallel Controllable Texture Synthesis,” in Proceedings of SIGGRAPH
’05, 2005, pp. 777–786.

[21] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization for example-based synthesis,”
in Proceedings of SIGGRAPH ’05, 2005, p. 795.

[22] “Silver Birch Bark.” [Online]. Available: http://www.geograph.org.uk/photo/1290234. [Accessed:
05-Oct-2012].

[23] “Oak tree bark.” [Online]. Available: http://www.geograph.org.uk/photo/640929. [Accessed: 05-
Oct-2012].

[24] “Bark of a London Plane (Platanus × acerifolia).” [Online]. Available:
http://www.geograph.org.uk/photo/3019538. [Accessed: 05-Oct-2012].

[25] B. Y. T. C. Whitmore, “STUDIES IN SYSTEMATIC BARK MORPHOLOGY I . BARK MORPHOLOGY IN
DIPTEROCARPACEAE,” New Phytologist, vol. 61, no. 2, pp. 191–207, 1962.

[26] “Sycamore tree bark.” [Online]. Available: http://www.geograph.org.uk/photo/1045706.
[Accessed: 05-Oct-2012].

[27] J. Han, K. Zhou, L. Wei, M. Gong, H. Bao, X. Zhang, and B. Guo, “Fast example-based surface
texture synthesis via discrete optimization,” THE VISUAL COMPUTER, vol. 22, no. 9–11, pp. 918–
925, 2006.

[28] H. O. Hartley, “Maximum Likelihood Estimation from Incomplete Data,” Biometrics, vol. 14, no. 2,
pp. 174–194, 1958.

[29] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.-Y. Shum, “Synthesis of bidirectional texture
functions on arbitrary surfaces,” in Proceedings of ACM SIGGRAPH, 2002, pp. 665 – 672.

[30] G. Turk, “Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion,” Computer
Graphics, vol. 25, no. 4, pp. 289–298, 1991.

[31] “QT Developer Network.” [Online]. Available: http://qt-project.org/. [Accessed: 22-Oct-2012].

Page | 47

[32] “The OpenMP API specification for parallel programming.” [Online]. Available:
http://openmp.org/wp/. [Accessed: 22-Oct-2012].

Page | 48

Appendix A

Page | 49

Appendix B

Page | 50

Appendix C

Figure 20 Examples of synthesis results produced by the discreet solver. The examples shown are the sample images [left
column] [12] and the synthesised images [right column].

Page | 51

Appendix D - The evaluation program

Page | 52

Page | 53

Appendix E - The raw data from the evaluation

Page | 54

Page | 55

